Code
<- Sys.time() start_time
<- Sys.time() start_time
A seleção de características é um passo crítico no processo de modelagem de regressão e classificação, pois influencia diretamente a performance e a eficiência do modelo final. Em contextos onde o número de características potenciais é vasto, a escolha de um método de seleção torna-se crucial. Tradicionalmente, poderíamos considerar a abordagem de força bruta, que testa todas as combinações possíveis de características para determinar o melhor conjunto. No entanto, essa estratégia é muitas vezes impraticável devido à sua complexidade exponencial, especialmente à medida que o número de características cresce. É aqui que os algoritmos genéticos (AGs) oferecem uma alternativa promissora.
Os algoritmos genéticos são inspirados nos processos de seleção natural e evolução biológica. Eles operam através da geração de uma população de soluções possíveis e, em seguida, aplicam operadores genéticos como seleção, cruzamento e mutação para evoluir as soluções ao longo de várias gerações. O objetivo é encontrar uma solução ótima ou satisfatória para o problema em questão.
Quando aplicados à seleção de características, os AGs têm várias vantagens sobre a abordagem de força bruta:
Eficiência Computacional: Ao invés de avaliar todas as combinações possíveis, os AGs exploram o espaço de busca de maneira inteligente, focando nas soluções mais promissoras. Isso pode reduzir significativamente o tempo de computação necessário.
Flexibilidade: Os AGs são capazes de lidar com espaços de busca não-lineares e com múltiplos ótimos locais, o que é comum em problemas de seleção de características.
Escalabilidade: Eles são mais escaláveis em relação ao número de características, tornando-os adequados para datasets de alta dimensão.
Adaptabilidade: Os AGs podem se adaptar a mudanças no espaço de busca, o que é útil em cenários onde os dados estão evoluindo.
Soluções Globais: Enquanto a força bruta garante encontrar a solução ótima global, ela é muitas vezes inviável. Os AGs, embora não garantam a solução ótima global, têm uma boa chance de se aproximar dela ou encontrar soluções que sejam suficientemente boas.
Dentro do contexto da seleção de variáveis, os algoritmos genéticos desempenham um papel crucial na mitigação do sobreajuste, ou overfitting, um problema comum quando um modelo é excessivamente complexo.
Fonte: Minhas (2021)
Ao simular o processo de evolução natural para otimizar a seleção de características, os algoritmos genéticos buscam um equilíbrio entre a adequação do modelo aos dados e a sua generalização para dados não vistos. Eles fazem isso ao penalizar conjuntos de características que são muito grandes ou que não contribuem significativamente para o poder preditivo do modelo. Isso é comparável à seleção natural, onde apenas os traços mais adaptáveis são passados para a próxima geração. Ao aplicar essa abordagem iterativa e seletiva, os algoritmos genéticos evitam eficazmente a armadilha de modelar o ruído estatístico presente nos dados de treinamento, o que é uma causa comum de sobreajuste em modelos preditivos. Assim, eles ajudam a assegurar que o modelo final seja robusto e confiável, com uma capacidade aprimorada de generalizar bem para novos conjuntos de dados.
Em resumo, os algoritmos genéticos oferecem uma abordagem mais viável e eficiente para a seleção de características em modelos de regressão e classificação, especialmente quando confrontados com um grande número de características. Eles não apenas economizam recursos computacionais valiosos, mas também fornecem um meio robusto e adaptável para navegar pelo complexo processo de identificar as características mais significativas para a modelagem.
library(dplyr)
library(tidyverse)
library(car)
library(MASS)
library(ISLR)
library(tictoc)
library(sjPlot)
library(glmulti)
library(flextable)
library(performance)
theme_set(theme_light(base_size = 12)) # Ajusta os temas dos gráficos
theme_update(panel.grid.minor = element_blank())
A técnica stepwise é um método estatístico iterativo utilizado para selecionar um subconjunto ótimo de variáveis preditoras para um modelo estatístico, como regressão linear ou logística. Funciona através de um processo de seleção sequencial onde, em cada etapa, uma variável é adicionada ou removida do modelo baseado em critérios específicos, como o valor do teste F, o critério de informação de Akaike (AIC) ou o critério de informação bayesiano (BIC). Existem duas formas principais da técnica stepwise: a seleção para frente (forward selection), que começa com nenhum preditor e adiciona o mais significativo em cada passo, e a seleção para trás (backward elimination), que começa com todos os possíveis preditores e remove o menos significativo em cada etapa.
Fonte: Siddiqi et. alli (2022)
O processo continua até que nenhum novo preditor melhore significativamente o modelo ao ser adicionado ou removido, resultando em um modelo que se espera que tenha um bom equilíbrio entre a simplicidade e a capacidade preditiva.
Para exemplificar, utilizaremos aqui um conjunto de dados bastante conhecido:
glimpse(mtcars)
Rows: 32
Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,…
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,…
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16…
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180…
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,…
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,…
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,…
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,…
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,…
head(mtcars)
Se quisermos prever o consumo de combustível desses modelos de automóveis, (em mpg/milhas por galão) deveremos utilizar as combinações ideias das variáveis explicativas que melhor descreveriam tais relações:
# Modelo completo e nulo
<- glm(mpg ~ (hp + drat + wt + qsec + gear)^2,
full_model data = mtcars, family = gaussian)
<- glm(mpg ~ 1, data = mtcars, family = gaussian) null_model
# Roda o procedimento backward
<- step(full_model, direction = "backward",
optimal_model_backward scope = list(upper = full_model, lower = null_model))
<- step(null_model, direction = "forward",
optimal_model_forward scope = list(upper = full_model, lower = null_model))
Comparando o modelo escolhido pelo backward com o forward:
Melhor backward
summary(optimal_model_backward)
Call:
glm(formula = mpg ~ hp + drat + wt + qsec + gear + hp:drat +
hp:wt + hp:qsec + hp:gear + drat:wt + drat:qsec + wt:qsec +
wt:gear, family = gaussian, data = mtcars)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.51094 -0.94114 -0.04562 1.05155 2.50569
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.888e+02 1.425e+02 -2.728 0.013799 *
hp 5.447e-01 2.178e-01 2.501 0.022258 *
drat 2.668e+01 1.913e+01 1.395 0.180120
wt 8.225e+01 2.679e+01 3.070 0.006592 **
qsec 1.713e+01 6.236e+00 2.748 0.013234 *
gear 2.316e+01 5.420e+00 4.273 0.000457 ***
hp:drat -1.236e-01 4.469e-02 -2.765 0.012748 *
hp:wt -5.294e-02 2.488e-02 -2.128 0.047392 *
hp:qsec -1.135e-02 6.886e-03 -1.649 0.116531
hp:gear 5.046e-02 2.181e-02 2.314 0.032709 *
drat:wt 5.970e+00 2.452e+00 2.435 0.025530 *
drat:qsec -1.422e+00 9.779e-01 -1.454 0.163231
wt:qsec -3.362e+00 1.082e+00 -3.107 0.006091 **
wt:gear -9.950e+00 2.868e+00 -3.469 0.002738 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 2.851113)
Null deviance: 1126.05 on 31 degrees of freedom
Residual deviance: 51.32 on 18 degrees of freedom
AIC: 135.93
Number of Fisher Scoring iterations: 2
summary(optimal_model_forward)
Call:
glm(formula = mpg ~ wt + hp + qsec + gear + wt:hp, family = gaussian,
data = mtcars)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.9608 -1.2725 -0.5094 1.5570 4.3383
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.998432 8.706505 3.905 0.000599 ***
wt -7.983387 1.356531 -5.885 3.31e-06 ***
hp -0.107998 0.025782 -4.189 0.000285 ***
qsec 0.555013 0.355563 1.561 0.130629
gear 0.997389 0.691065 1.443 0.160887
wt:hp 0.027265 0.007165 3.805 0.000775 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 4.310122)
Null deviance: 1126.05 on 31 degrees of freedom
Residual deviance: 112.06 on 26 degrees of freedom
AIC: 144.92
Number of Fisher Scoring iterations: 2
A seleção de variáveis utilizando o método stepwise é uma técnica amplamente adotada na busca pelo modelo mais eficaz. Contudo, apesar de sua popularidade, ela não é infalível. O método stepwise incorpora duas estratégias principais: a seleção progressiva (forward selection) e a seleção regressiva (backward elimination). No entanto, essa abordagem enfrenta desafios significativos. Um deles é a falta de convergência para um modelo consistente, pois as estratégias progressiva e regressiva podem resultar em modelos distintos, como ilustrado em nosso exemplo. Além disso, mesmo na eventual convergência para um modelo comum, não há garantia de que este seja o mais adequado. Essa limitação decorre da natureza incremental do método stepwise, que avalia os modelos adicionando ou removendo variáveis sequencialmente, sem considerar todas as combinações possíveis de variáveis simultaneamente. Este processo iterativo de comparação e seleção pode, portanto, negligenciar a configuração ideal de variáveis que maximizaria o desempenho do modelo.
Veja pelo teste de \(\chi^2\) na ANOVA e da tabela de métricas de performance:
anova(optimal_model_backward, optimal_model_forward, test = "Chisq")
compare_performance(optimal_model_backward, optimal_model_forward)
Aqui os critérios de informação (AIC, BIC) são preferíveis em relação ao R^2 por exemplo, pois eles demonstram melhor o ajuste do modelo, onde ele possa ser analisado/considerado como aquele de menor AIC/BIC como preferível, na medida em que o modelo for incorporando mais preditores (mais parâmetros então maior a chance de overfitting, p. ex. e menor, underfitting).
Utilizando o pacote glmulti
no ambiente de programação R, é viável implementar um método exaustivo que constrói todos os modelos estatísticos concebíveis, levando em conta todas as combinações de preditores e, se desejado, suas interações binárias. Esta técnica é conhecida como “força bruta”, refletindo sua abrangência e intensidade computacional.
O glmulti
procede à avaliação comparativa dos modelos, baseando-se na quantidade de informação relevante que cada um oferece. Para tal, emprega-se critérios de informação, tais como o Critério de Informação de Akaike (AIC) ou o Critério de Informação Bayesiano (BIC). Esses critérios são preferidos em detrimento de métricas tradicionais como o R², pois oferecem uma medida de “adequação” do modelo que incorpora uma penalidade proporcional ao número de preditores utilizados.
Fonte: Hebbali (2020)
Diferentemente dos critérios de informação, o R² tende a aumentar à medida que mais termos são adicionados ao modelo, o que pode levar a um sobreajuste. Um modelo sobreajustado é problemático, pois tende a refletir o ruído dos dados em vez de capturar as relações substanciais entre as variáveis. Isso torna os coeficientes estimados e os valores-p associados pouco confiáveis para inferências estatísticas.
O sobreajuste não apenas compromete a precisão do modelo, mas também sua aplicabilidade, pois um modelo que se ajusta demais às idiossincrasias de uma amostra específica falha em ser generalizável para outras amostras, reduzindo sua utilidade prática. Portanto, é essencial construir uma gama abrangente de modelos e utilizar Critérios de Informação para sua comparação, em vez de se fiar exclusivamente no R². Apesar da eficácia da abordagem de força bruta, o desafio reside na gestão do grande número de modelos potenciais, o que exige estratégias para otimizar o processo de seleção e análise, mantendo a integridade e a eficiência computacional.
Mudamos o nosso dataset (não mais o mtcars
) e neste estudo, nosso foco é analisar o salário de 3.000 trabalhadores americanos, utilizando cinco variáveis preditoras: classe de trabalho, educação, idade, saúde e seguro de saúde. Para realizar essa análise, selecionamos o conjunto de dados “Wage”, disponível no pacote ISLR
do ambiente estatístico R.
A escolha do Critério de Informação (CI) para avaliar os modelos é crucial. Por padrão, utilizamos o Critério de Informação de Akaike (AIC), mas temos à disposição outras opções como o Critério de Informação Bayesiano (BIC), o quasi-AIC para dados com superdispersão ou de contagem (qaic e qaicc), e o AIC corrigido para amostras pequenas (aicc). Este último é de minha preferência pessoal, pois oferece resultados consistentes com o AIC em amostras grandes e supera seu desempenho em amostras menores, proporcionando uma avaliação mais precisa em contextos com limitações de dados. Essa flexibilidade na escolha do CI permite uma adaptação mais fina à natureza dos dados e aos objetivos específicos da análise, garantindo que a seleção do modelo seja tanto rigorosa quanto relevante para a interpretação dos fatores que influenciam os salários no mercado de trabalho americano.
Veremos até quantos candidatos a modelos possíveis rodando a rotina presente no pacote glmulti
. O argumento method = "d"
conta o número de modelos candidatos sem realizar nenhum cálculo. Para o nosso exemplo com 5 preditores, teremos 32 modelos sem interações e 1921 modelos com interações. Se o method = "h"
, uma triagem exaustiva é realizada, o que significa que todos os modelos possíveis serão criados. Se o method = "g"
, o algoritmo genético é empregado (recomendado para grandes conjuntos de candidatos).
glmulti(wage ~ jobclass + education + age + health + health_ins,
data = Wage,
crit = aicc, # AICC é o AIC corrigido para pequenas amostras
level = 1, # 2 com interações, 1 sem
method = "d", # "d", ou "h", ou "g"
family = gaussian,
fitfunction = glm, # Tipo de modelo (LM, GLM etc.)
confsetsize = 100) # utiliza somente os 100 melhores modelos
Initialization...
TASK: Diagnostic of candidate set.
Sample size: 3000
4 factor(s).
1 covariate(s).
0 f exclusion(s).
0 c exclusion(s).
0 f:f exclusion(s).
0 c:c exclusion(s).
0 f:c exclusion(s).
Size constraints: min = 0 max = -1
Complexity constraints: min = 0 max = -1
Your candidate set contains 32 models.
[1] 32
glmulti(wage ~ jobclass + education + age + health + health_ins,
data = Wage,
crit = aicc, # AICC é o AIC corrigido para pequenas amostras
level = 2, # 2 com interações, 1 sem
method = "d", # "d", ou "h", ou "g"
family = gaussian,
fitfunction = glm, # Tipo de modelo (LM, GLM etc.)
confsetsize = 100) # utiliza somente os 100 melhores modelos
Initialization...
TASK: Diagnostic of candidate set.
Sample size: 3000
4 factor(s).
1 covariate(s).
0 f exclusion(s).
0 c exclusion(s).
0 f:f exclusion(s).
0 c:c exclusion(s).
0 f:c exclusion(s).
Size constraints: min = 0 max = -1
Complexity constraints: min = 0 max = -1
Your candidate set contains 1921 models.
[1] 1921
Veja que dispomos de 32 modelos válidos sem interações entre as explicativas e 1921 com as interações entre elas.
Procederemos agora à execução do algoritmo exaustivo para calcular 1921 regressões, com o objetivo de identificar o modelo ótimo que integra as interações entre os cinco preditores selecionados. Para monitorar o tempo de processamento, utilizaremos as funções de contagem de tempo do pacote tictoc
.
De maneira encorajadora, o método exaustivo consumiu meros 60 segundos para ser concluído. Esta é uma performance notável, a meu ver. Contudo, é importante salientar que, em situações onde o número de preditores excede significativamente cinco, podemos nos deparar com desafios relacionados ao desempenho computacional.
tic()
<- glmulti(wage ~ jobclass + education + age + health + health_ins,
h_model data = Wage,
crit = aicc,
level = 2,
method = "h",
family = gaussian,
fitfunction = glm,
confsetsize = 100)
Initialization...
TASK: Exhaustive screening of candidate set.
Fitting...
After 50 models:
Best model: wage~1+education+age+jobclass:age+health:age+health_ins:age
Crit= 29827.864295308
Mean crit= 30184.7335535017
After 100 models:
Best model: wage~1+jobclass+education+age+education:jobclass+education:age+health:age+health_ins:age
Crit= 29815.9273144544
Mean crit= 30114.5541058805
After 150 models:
Best model: wage~1+jobclass+education+age+education:jobclass+education:age+health:age+health_ins:age
Crit= 29815.9273144544
Mean crit= 29934.7534975215
After 200 models:
Best model: wage~1+jobclass+education+age+education:jobclass+education:age+health:age+health_ins:age
Crit= 29815.9273144544
Mean crit= 29885.0804095925
After 250 models:
Best model: wage~1+jobclass+education+age+education:jobclass+education:age+health:age+health_ins:age
Crit= 29815.9273144544
Mean crit= 29853.1589383865
After 300 models:
Best model: wage~1+jobclass+education+health+age+education:jobclass+education:age+health:age+health_ins:age
Crit= 29815.7251202986
Mean crit= 29834.13579651
After 350 models:
Best model: wage~1+jobclass+education+health+age+education:jobclass+education:age+health:age+health_ins:age
Crit= 29815.7251202986
Mean crit= 29829.7529704456
After 400 models:
Best model: wage~1+education+health_ins+age+health_ins:education+education:age+health:age
Crit= 29805.2622191833
Mean crit= 29825.4446546592
After 450 models:
Best model: wage~1+education+health_ins+age+health_ins:education+jobclass:age+education:age+health:age+health_ins:age
Crit= 29803.0289240545
Mean crit= 29820.4943030812
After 500 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+education:age+health:age
Crit= 29796.7544660965
Mean crit= 29814.2488044282
After 550 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29808.3093463257
After 600 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29808.3093463257
After 650 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29808.3093463257
After 700 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29808.3093463257
After 750 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29806.9777994778
After 800 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29805.3845834103
After 850 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29805.2590912908
After 900 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29805.2237304162
After 950 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29805.0505615358
After 1000 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29804.3137547809
After 1050 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29804.0902716277
After 1100 models:
Best model: wage~1+jobclass+education+health_ins+age+education:jobclass+health_ins:education+education:age+health:age
Crit= 29794.403562754
Mean crit= 29802.3073891049
After 1150 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29800.5809471328
After 1200 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29799.7275115013
After 1250 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29799.7256681841
After 1300 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29799.7256681841
After 1350 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29799.5210963766
After 1400 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.9406807532
After 1450 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.7409828125
After 1500 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6895787015
After 1550 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6895787015
After 1600 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6818967865
After 1650 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6284501407
After 1700 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6265738983
After 1750 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6253233475
After 1800 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6253233475
After 1850 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6253233475
After 1900 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6232989334
After 1950 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6232989334
After 2000 models:
Best model: wage~1+jobclass+education+health+health_ins+age+education:jobclass+health_ins:education+education:age+health:age+health_ins:age
Crit= 29793.4306133546
Mean crit= 29798.6232989334
Completed.
toc() # 19 sec elapsed: 1921 models
24.23 sec elapsed
A estratégia inicial para aprimorar o desempenho consiste na eliminação de preditores ou interações que sejam redundantes. Tomemos, por exemplo, o peso e o índice de massa corporal (IMC), que tendem a fornecer informações sobrepostas — em termos estatísticos, diríamos que apresentam alta multicolinearidade. A inclusão simultânea de ambos os termos pode inflar desnecessariamente a quantidade de modelos possíveis, sem agregar valor significativo à análise.
Ilustrativamente, a adição de apenas dois preditores categóricos adicionais — estado civil (maritl
) e região (region
) — ao modelo salarial previamente mencionado, eleva o número de modelos potenciais para mais de 2,5 milhões (exatamente 2.604.485).
glmulti(wage ~ jobclass + education + age + health + health_ins + maritl + region,
data = Wage,
crit = aicc,
level = 2,
method = "d",
family = gaussian,
fitfunction = glm,
confsetsize = 100,
plotty=FALSE)
Initialization...
TASK: Diagnostic of candidate set.
Sample size: 3000
6 factor(s).
1 covariate(s).
0 f exclusion(s).
0 c exclusion(s).
0 f:f exclusion(s).
0 c:c exclusion(s).
0 f:c exclusion(s).
Size constraints: min = 0 max = -1
Complexity constraints: min = 0 max = -1
Your candidate set contains 2604485 models.
[1] 2604485
Diante de um volume tão elevado, que excede a capacidade de processamento convencional, o algoritmo genético surge como uma solução viável, capaz de navegar por este vasto espaço de modelos de maneira eficiente.
Ao lidar com um conjunto de 6 preditores numéricos e suas respectivas interações, a metodologia de “força bruta” pode demandar aproximadamente 3 horas para processamento completo. [Aqui demonstraremos somente com 5 preditores, para fins de comparação com o tempo e resultados obtidos do método exaustivo x força bruta e o tempo de execução.] Em contraste, a utilização de algoritmos genéticos reduz significativamente esse tempo para apenas 50 a 60 segundos. Essa abordagem eficiente não só economiza tempo valioso, mas também alcança resultados comparáveis aos obtidos pelo método mais demorado, embora possa ocasionalmente resultar em valores ligeiramente superiores do Critério de Informação.
Vamos comparar os timings com o nosso primeiro dataset de exemplo, o mtcars
:
tic()
<- glmulti(mpg ~ hp + drat + wt + qsec + gear,
test_h data = mtcars,
method = "h", # h = método exaustivo (força bruta)
crit = aic,
level = 2,
family = gaussian,
fitfunction = glm,
confsetsize = 100)
Initialization...
TASK: Exhaustive screening of candidate set.
Fitting...
After 50 models:
Best model: mpg~1+gear:wt+gear:qsec
Crit= 146.193186152864
Mean crit= 168.372599842419
After 100 models:
Best model: mpg~1+gear:wt+gear:qsec
Crit= 146.193186152864
Mean crit= 163.894646890807
After 150 models:
Best model: mpg~1+drat:hp+wt:hp+qsec:wt+gear:wt+gear:qsec
Crit= 144.598329266555
Mean crit= 156.275404945991
After 200 models:
Best model: mpg~1+drat:hp+wt:hp+qsec:wt+gear:wt+gear:qsec
Crit= 144.598329266555
Mean crit= 152.132216200647
After 250 models:
Best model: mpg~1+drat:hp+wt:hp+qsec:wt+gear:wt+gear:qsec
Crit= 144.598329266555
Mean crit= 151.033663189397
After 300 models:
Best model: mpg~1+drat:hp+wt:hp+qsec:wt+gear:wt+gear:qsec
Crit= 144.598329266555
Mean crit= 149.891456335748
After 350 models:
Best model: mpg~1+drat:hp+wt:hp+qsec:wt+gear:wt+gear:qsec
Crit= 144.598329266555
Mean crit= 149.767066238731
After 400 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 148.046431384816
After 450 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 148.016745111225
After 500 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 147.3045629641
After 550 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.774135351077
After 600 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.74082023953
After 650 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.655123900789
After 700 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.421621806416
After 750 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.39399961777
After 800 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.225695114579
After 850 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 146.225695114579
After 900 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 145.723671137625
After 950 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 145.410493274487
After 1000 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 145.397542227074
After 1050 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 145.071831444856
After 1100 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.950969832488
After 1150 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.903156753665
After 1200 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.65302186714
After 1250 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.65302186714
After 1300 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.592234777517
After 1350 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.589177719307
After 1400 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.589177719307
After 1450 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.248652513689
After 1500 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.174066231571
After 1550 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 144.060744608176
After 1600 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.957703689905
After 1650 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.957703689905
After 1700 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.911391196911
After 1750 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.910062639886
After 1800 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.910062639886
After 1850 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.907721129938
After 1900 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.907721129938
After 1950 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.850335944671
After 2000 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.831959182338
After 2050 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.813033700993
After 2100 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.807150141774
After 2150 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2200 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2250 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2300 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2350 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2400 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2450 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.793065937144
After 2500 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.663029986256
After 2550 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.630240069528
After 2600 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.630240069528
After 2650 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.566819498536
After 2700 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.566819498536
After 2750 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.565794937649
After 2800 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.565794937649
After 2850 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.565794937649
After 2900 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.559292531709
After 2950 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.559292531709
After 3000 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.452353832058
After 3050 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.385037645174
After 3100 models:
Best model: mpg~1+wt:hp+qsec:hp+gear:hp+gear:wt+gear:qsec
Crit= 140.628643020179
Mean crit= 143.385037645174
After 3150 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.260867812097
After 3200 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.186966766267
After 3250 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.186966766267
After 3300 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.180419987129
After 3350 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.180419987129
After 3400 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.180419987129
After 3450 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.180419987129
After 3500 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.180419987129
After 3550 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.142157205844
After 3600 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.138804831927
After 3650 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.122923388803
After 3700 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.119058953281
After 3750 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.105234928175
After 3800 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.052421953374
After 3850 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.050087044238
After 3900 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.050087044238
After 3950 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.021973069064
After 4000 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.021973069064
After 4050 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.020454535585
After 4100 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.00935048557
After 4150 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 143.00935048557
After 4200 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.927490086569
After 4250 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.883277432069
After 4300 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.883277432069
After 4350 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.883277432069
After 4400 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.883277432069
After 4450 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.878468688408
After 4500 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.878468688408
After 4550 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.878468688408
After 4600 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.794683921545
After 4650 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.785615187281
After 4700 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.775126972353
After 4750 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 4800 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 4850 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 4900 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 4950 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 5000 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 5050 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.767167744989
After 5100 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.748767339728
After 5150 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.741904736048
After 5200 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.741904736048
After 5250 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.741904736048
After 5300 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.741904736048
After 5350 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.741904736048
After 5400 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.730003302893
After 5450 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.730003302893
After 5500 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.730003302893
After 5550 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.730003302893
After 5600 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.730003302893
After 5650 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.730003302893
After 5700 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.721224277867
After 5750 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.721224277867
After 5800 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.702272639738
After 5850 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.702272639738
After 5900 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 5950 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6000 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6050 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6100 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6150 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6200 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6250 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.699394730066
After 6300 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6350 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6400 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6450 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6500 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6550 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6600 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6650 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6700 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.696888401012
After 6750 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.683897804617
After 6800 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.683897804617
After 6850 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.681092171117
After 6900 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.681092171117
After 6950 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.681092171117
After 7000 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.681092171117
After 7050 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.681092171117
After 7100 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.677646573869
After 7150 models:
Best model: mpg~1+drat+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:drat+gear:wt
Crit= 140.327972579494
Mean crit= 142.677646573869
After 7200 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.591531333506
After 7250 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.543518292473
After 7300 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.519136960098
After 7350 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.446550736014
After 7400 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7450 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7500 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7550 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7600 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7650 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7700 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7750 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7800 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7850 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7900 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 7950 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.40296677103
After 8000 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.383593084206
After 8050 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.383593084206
After 8100 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.383593084206
After 8150 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.383593084206
After 8200 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.383593084206
After 8250 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.365297487215
After 8300 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.365297487215
After 8350 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.365297487215
After 8400 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.333555459399
After 8450 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.324919477457
After 8500 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.316522212038
After 8550 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.316522212038
After 8600 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.31579997157
After 8650 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.31579997157
After 8700 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.31579997157
After 8750 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.31579997157
After 8800 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.31579997157
After 8850 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.286314238443
After 8900 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 8950 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 9000 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 9050 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 9100 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 9150 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 9200 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.282449744035
After 9250 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.279661734499
After 9300 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.279661734499
After 9350 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.279661734499
After 9400 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.273901408575
After 9450 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.273901408575
After 9500 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.273901408575
After 9550 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.273901408575
After 9600 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.273901408575
After 9650 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.266896067511
After 9700 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.266896067511
After 9750 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.266896067511
After 9800 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.266896067511
After 9850 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.266896067511
After 9900 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.26068799811
After 9950 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.26068799811
After 10000 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.26068799811
After 10050 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.26068799811
After 10100 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.26068799811
After 10150 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10200 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10250 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10300 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10350 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10400 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10450 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10500 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10550 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10600 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10650 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10700 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10750 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10800 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.258189170182
After 10850 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.243202319022
After 10900 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.243202319022
After 10950 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.238767933296
After 11000 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.235023222431
After 11050 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.235023222431
After 11100 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.235023222431
After 11150 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11200 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11250 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11300 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11350 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11400 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11450 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11500 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11550 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.226489439137
After 11600 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.220087815577
After 11650 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.220087815577
After 11700 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.220087815577
After 11750 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 11800 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 11850 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 11900 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 11950 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 12000 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 12050 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.215714498142
After 12100 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.204411681334
After 12150 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.204411681334
After 12200 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12250 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12300 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12350 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12400 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12450 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12500 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12550 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12600 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.186123338929
After 12650 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.183696154577
After 12700 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.183696154577
After 12750 models:
Best model: mpg~1+drat+wt+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 140.216347673733
Mean crit= 142.167665445974
After 12800 models:
Best model: mpg~1+wt+qsec+drat:hp+qsec:wt+gear:wt+gear:qsec
Crit= 137.962055577239
Mean crit= 142.012601685718
After 12850 models:
Best model: mpg~1+wt+qsec+drat:hp+qsec:wt+gear:wt+gear:qsec
Crit= 137.962055577239
Mean crit= 141.882060446346
After 12900 models:
Best model: mpg~1+wt+qsec+drat:hp+qsec:wt+gear:wt+gear:qsec
Crit= 137.962055577239
Mean crit= 141.847846257201
After 12950 models:
Best model: mpg~1+wt+qsec+drat:hp+qsec:wt+gear:wt+gear:qsec
Crit= 137.962055577239
Mean crit= 141.693364036808
After 13000 models:
Best model: mpg~1+wt+qsec+drat:hp+qsec:wt+gear:wt+gear:qsec
Crit= 137.962055577239
Mean crit= 141.629354319022
After 13050 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 141.39954051034
After 13100 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 141.32899562022
After 13150 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 141.177531587486
After 13200 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 141.123480833253
After 13250 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 141.067149204515
After 13300 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 141.027078910074
After 13350 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.893027766836
After 13400 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.849785808718
After 13450 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.753828160856
After 13500 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.749759458845
After 13550 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.602691671226
After 13600 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.539735802144
After 13650 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.518136349965
After 13700 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.465101194717
After 13750 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.444454146992
After 13800 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.382702533181
After 13850 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.299663846239
After 13900 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.260830678175
After 13950 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.20196828232
After 14000 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.177945244051
After 14050 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.176087506284
After 14100 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.136962041821
After 14150 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.132035280437
After 14200 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.120678200273
After 14250 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.120678200273
After 14300 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.120678200273
After 14350 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.056217297047
After 14400 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.037047137084
After 14450 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 140.037047137084
After 14500 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.961644009469
After 14550 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.949033140967
After 14600 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.923996715044
After 14650 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.923996715044
After 14700 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.923996715044
After 14750 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.895080277593
After 14800 models:
Best model: mpg~1+wt+qsec+qsec:hp+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.660228749827
Mean crit= 139.868759951041
After 14850 models:
Best model: mpg~1+hp+wt+qsec+drat:hp+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:drat+gear:wt+gear:qsec
Crit= 137.453368309053
Mean crit= 139.809760796542
After 14900 models:
Best model: mpg~1+hp+wt+qsec+drat:hp+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:drat+gear:wt+gear:qsec
Crit= 137.453368309053
Mean crit= 139.749790493431
After 14950 models:
Best model: mpg~1+hp+wt+qsec+drat:hp+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:drat+gear:wt+gear:qsec
Crit= 137.453368309053
Mean crit= 139.743616265377
After 15000 models:
Best model: mpg~1+hp+wt+qsec+drat:hp+wt:hp+wt:drat+qsec:hp+qsec:drat+qsec:wt+gear:hp+gear:drat+gear:wt+gear:qsec
Crit= 137.453368309053
Mean crit= 139.741374462876
After 15050 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.659900531309
After 15100 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.621970006849
After 15150 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.557049482478
After 15200 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.549525238796
After 15250 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.549525238796
After 15300 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.518644517935
After 15350 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.518644517935
After 15400 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.518644517935
After 15450 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.50229894768
After 15500 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.50229894768
After 15550 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.48582701636
After 15600 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.464321499355
After 15650 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.461975566982
After 15700 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.460740304343
After 15750 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.460740304343
After 15800 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.460740304343
After 15850 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.460740304343
After 15900 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.460740304343
After 15950 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.417636091552
After 16000 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.417636091552
After 16050 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.417636091552
After 16100 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.382069633976
After 16150 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.377054310835
After 16200 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.377054310835
After 16250 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.377054310835
After 16300 models:
Best model: mpg~1+drat+wt+qsec+drat:hp+wt:drat+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 137.063069274529
Mean crit= 139.377054310835
After 16350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.337397875779
After 16400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.316115097192
After 16450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.28270941934
After 16500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.28270941934
After 16550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.28270941934
After 16600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.28270941934
After 16650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.273843090753
After 16700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.245042860795
After 16750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.245042860795
After 16800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.245042860795
After 16850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.245042860795
After 16900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.22088262887
After 16950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 17950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 18950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 19950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 20950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 21950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 22950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 23950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 24950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 25950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 26950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 27950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28750 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28800 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28850 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28900 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 28950 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29000 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29050 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29100 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29150 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29200 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29250 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29300 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29350 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29400 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29450 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29500 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29550 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29600 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29650 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.192634081886
After 29700 models:
Best model: mpg~1+hp+drat+wt+qsec+drat:hp+wt:drat+qsec:hp+qsec:wt+gear:hp+gear:drat+gear:wt
Crit= 136.432231613786
Mean crit= 139.144358723309
After 29750 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.844398514929
After 29800 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.725917255096
After 29850 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.647459750123
After 29900 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.584409864494
After 29950 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.464900649394
After 30000 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.382474914287
After 30050 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.34248844609
After 30100 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.301385261323
After 30150 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.286920567034
After 30200 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.286920567034
After 30250 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.221871909021
After 30300 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.187247620277
After 30350 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.187247620277
After 30400 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.162576582241
After 30450 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.162576582241
After 30500 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.111948064617
After 30550 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.106051423334
After 30600 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.100874896638
After 30650 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.100874896638
After 30700 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.100874896638
After 30750 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.049618745098
After 30800 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.010466534029
After 30850 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 138.001228185536
After 30900 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.984387044258
After 30950 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.984016489485
After 31000 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.965833258805
After 31050 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.954562410382
After 31100 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.954562410382
After 31150 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.954539025041
After 31200 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.954539025041
After 31250 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.865496121793
After 31300 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.846881896295
After 31350 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.846881896295
After 31400 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.846881896295
After 31450 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.846881896295
After 31500 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.846881896295
After 31550 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.844386727569
After 31600 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.844386727569
After 31650 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.844386727569
After 31700 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.84170241616
After 31750 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.84170241616
After 31800 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.770707604355
After 31850 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.749240780882
After 31900 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.73003912775
After 31950 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.73003912775
After 32000 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.719993780494
After 32050 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.719993780494
After 32100 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.689845720356
After 32150 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.688070612082
After 32200 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.686219347153
After 32250 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.686219347153
After 32300 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.686219347153
After 32350 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.686219347153
After 32400 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.685759146871
After 32450 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.685759146871
After 32500 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.685759146871
After 32550 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.685759146871
After 32600 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.683698807926
After 32650 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.683698807926
After 32700 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.683698807926
After 32750 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.683698807926
After 32800 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.683698807926
After 32850 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.667652413533
After 32900 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.667652413533
After 32950 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.667652413533
After 33000 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.667652413533
After 33050 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.667652413533
After 33100 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.667652413533
After 33150 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.665246841122
After 33200 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.665246841122
After 33250 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.665246841122
After 33300 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.659533084601
After 33350 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.649382297842
After 33400 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633798864632
After 33450 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633798864632
After 33500 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633798864632
After 33550 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633798864632
After 33600 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633798864632
After 33650 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633597280441
After 33700 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633597280441
After 33750 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633597280441
After 33800 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633597280441
After 33850 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.633597280441
After 33900 models:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 137.590733321479
Completed.
toc()
124.96 sec elapsed
A excelência do algoritmo genético é reconhecida, particularmente pela sua capacidade de processamento rápido. No entanto, a sua aplicabilidade universal não é isenta de limitações. Notavelmente, quando se trata de variáveis categóricas com um vasto número de categorias, a performance do algoritmo genético pode ser eclipsada pela abordagem exaustiva. A título de exemplo, o nosso modelo de análise salarial, que incorpora uma multiplicidade de preditores categóricos, completou a triagem exaustiva em apenas 19 segundos, enquanto o algoritmo genético demandou 117 segundos para alcançar a convergência, resultando em um tempo quase seis vezes superior. Adicionalmente, o algoritmo genético está sujeito a desafios de convergência, podendo operar por um período indefinido sem previsibilidade de conclusão. Mais ainda, o método exaustivo tende a resultar em valores de Critério de Informação superiores. Portanto, recomenda-se enfaticamente a geração de todos os modelos possíveis por meio da triagem exaustiva, ou da aplicação da metodologia de “força bruta”, sempre que factível, reservando o uso do algoritmo genético estritamente para contextos com uma quantidade substancial de preditores numéricos.
tic()
<- glmulti(mpg ~ hp + drat + wt + qsec + gear,
test_g data = mtcars,
method = "g", # g = genetic algorithms
crit = aic,
level = 2,
family = gaussian,
fitfunction = glm,
confsetsize = 100)
Initialization...
TASK: Genetic algorithm in the candidate set.
Initialization...
Algorithm started...
After 10 generations:
Best model: mpg~1+hp+wt+qsec+qsec:drat+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 138.975661358302
Mean crit= 151.182613166538
Change in best IC: -9861.0243386417 / Change in mean IC: -9848.81738683346
After 20 generations:
Best model: mpg~1+hp+wt+qsec+qsec:wt+gear:hp+gear:wt+gear:qsec
Crit= 137.952546857568
Mean crit= 149.035616345581
Change in best IC: -1.02311450073427 / Change in mean IC: -2.14699682095701
After 30 generations:
Best model: mpg~1+wt+qsec+gear+qsec:hp+qsec:wt+gear:drat+gear:wt
Crit= 136.61102526519
Mean crit= 147.398777170023
Change in best IC: -1.34152159237763 / Change in mean IC: -1.63683917555778
After 40 generations:
Best model: mpg~1+wt+qsec+gear+qsec:hp+qsec:wt+gear:drat+gear:wt
Crit= 136.61102526519
Mean crit= 146.494370090289
Change in best IC: 0 / Change in mean IC: -0.904407079734369
After 50 generations:
Best model: mpg~1+wt+qsec+gear+qsec:hp+qsec:wt+gear:wt
Crit= 136.237445139365
Mean crit= 145.721389786794
Change in best IC: -0.373580125824589 / Change in mean IC: -0.772980303494819
After 60 generations:
Best model: mpg~1+wt+qsec+gear+qsec:hp+qsec:wt+gear:wt
Crit= 136.237445139365
Mean crit= 145.383956733359
Change in best IC: 0 / Change in mean IC: -0.337433053434893
After 70 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 144.930314046032
Change in best IC: -1.50341598754119 / Change in mean IC: -0.453642687327317
After 80 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 144.494042151362
Change in best IC: 0 / Change in mean IC: -0.436271894669829
After 90 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 144.285616291053
Change in best IC: 0 / Change in mean IC: -0.208425860308608
After 100 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 144.086705632512
Change in best IC: 0 / Change in mean IC: -0.198910658541791
After 110 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 143.845619666556
Change in best IC: 0 / Change in mean IC: -0.241085965955108
After 120 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 143.769297341986
Change in best IC: 0 / Change in mean IC: -0.076322324570782
After 130 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 143.698759944009
Change in best IC: 0 / Change in mean IC: -0.0705373979762385
After 140 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 143.50296689591
Change in best IC: 0 / Change in mean IC: -0.195793048099262
After 150 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 143.307720319917
Change in best IC: 0 / Change in mean IC: -0.195246575993423
After 160 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 143.068987070956
Change in best IC: 0 / Change in mean IC: -0.238733248961154
After 170 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.739625495126
Change in best IC: 0 / Change in mean IC: -0.329361575829495
After 180 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.695489389972
Change in best IC: 0 / Change in mean IC: -0.0441361051541094
After 190 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.523711361974
Change in best IC: 0 / Change in mean IC: -0.171778027997533
After 200 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.462625149521
Change in best IC: 0 / Change in mean IC: -0.0610862124534037
After 210 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.375689894182
Change in best IC: 0 / Change in mean IC: -0.0869352553392844
After 220 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.183310509389
Change in best IC: 0 / Change in mean IC: -0.192379384793071
After 230 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 142.145646665506
Change in best IC: 0 / Change in mean IC: -0.037663843883081
After 240 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.919882392764
Change in best IC: 0 / Change in mean IC: -0.225764272741344
After 250 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.894974792564
Change in best IC: 0 / Change in mean IC: -0.0249076002006063
After 260 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.815171803777
Change in best IC: 0 / Change in mean IC: -0.0798029887868665
After 270 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.75312416651
Change in best IC: 0 / Change in mean IC: -0.0620476372663177
After 280 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.75312416651
Change in best IC: 0 / Change in mean IC: 0
After 290 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.642113671989
Change in best IC: 0 / Change in mean IC: -0.111010494521167
After 300 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.615809116402
Change in best IC: 0 / Change in mean IC: -0.026304555586961
After 310 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.611199773051
Change in best IC: 0 / Change in mean IC: -0.00460934335146135
After 320 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.545242722748
Change in best IC: 0 / Change in mean IC: -0.0659570503032967
After 330 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.418729154527
Change in best IC: 0 / Change in mean IC: -0.126513568220304
After 340 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.380288866522
Change in best IC: 0 / Change in mean IC: -0.0384402880055177
After 350 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.260283854279
Change in best IC: 0 / Change in mean IC: -0.120005012242871
After 360 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.209688778613
Change in best IC: 0 / Change in mean IC: -0.0505950756654556
After 370 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.087855519222
Change in best IC: 0 / Change in mean IC: -0.121833259391281
After 380 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.034697986587
Change in best IC: 0 / Change in mean IC: -0.0531575326347991
After 390 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.034697986587
Change in best IC: 0 / Change in mean IC: 0
After 400 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 141.034122844699
Change in best IC: 0 / Change in mean IC: -0.00057514188802088
After 410 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.963006744586
Change in best IC: 0 / Change in mean IC: -0.0711161001134997
After 420 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.947972909578
Change in best IC: 0 / Change in mean IC: -0.0150338350081256
After 430 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.909318345826
Change in best IC: 0 / Change in mean IC: -0.0386545637518623
After 440 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.899154323515
Change in best IC: 0 / Change in mean IC: -0.0101640223109882
After 450 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.812209953658
Change in best IC: 0 / Change in mean IC: -0.0869443698566101
After 460 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.792425144782
Change in best IC: 0 / Change in mean IC: -0.0197848088761816
After 470 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.789625088012
Change in best IC: 0 / Change in mean IC: -0.00280005677046802
After 480 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.744701340208
Change in best IC: 0 / Change in mean IC: -0.0449237478030966
After 490 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.716693481452
Change in best IC: 0 / Change in mean IC: -0.0280078587563253
After 500 generations:
Best model: mpg~1+wt+qsec+gear+drat:hp+qsec:wt+gear:wt
Crit= 134.734029151824
Mean crit= 140.716693481452
Improvements in best and average IC have bebingo en below the specified goals.
Algorithm is declared to have converged.
Completed.
toc()
43.86 sec elapsed
Cumpre recordar que, no início desta exposição, foi apresentada uma análise crítica da seleção sequencial, sugerindo-se que a metodologia disponível dentro do uso do pacote glmulti
(força bruta e algoritmos genéticos) poderia ser superior. Assim, propõe-se agora uma comparação meticulosa entre os resultados obtidos pelos algoritmos exaustivo e genético e aqueles advindos das técnicas de seleção pra frente (forward) e pra trás (backward), com o intuito de determinar qual estratégia resulta no modelo de análise mais acurado e eficaz.
<- test_h@objects[[1]]
optimal_model_glmulti_exhaustive <- test_g@objects[[1]]
optimal_model_glmulti_genetic
compare_performance(
optimal_model_glmulti_exhaustive,
optimal_model_glmulti_genetic,
optimal_model_backward,
optimal_model_forward )
$formula optimal_model_glmulti_exhaustive
mpg ~ 1 + wt + qsec + gear + drat:hp + qsec:wt + gear:wt
<environment: 0x000001bcb73baae8>
$formula optimal_model_glmulti_genetic
mpg ~ 1 + wt + qsec + gear + drat:hp + qsec:wt + gear:wt
<environment: 0x000001bcb1598080>
$formula optimal_model_backward
mpg ~ hp + drat + wt + qsec + gear + hp:drat + hp:wt + hp:qsec +
hp:gear + drat:wt + drat:qsec + wt:qsec + wt:gear
$formula optimal_model_forward
mpg ~ wt + hp + qsec + gear + wt:hp
Observa-se que a metodologia implementada pelo pacote glmulti
resultou em valores inferiores tanto para o Critério de Informação de Akaike (AIC) quanto para o Critério de Informação Bayesiano (BIC), indicando uma eficácia notável. De forma interessante, o coeficiente de determinação (R²) obtido por glmulti
situa-se medianamente entre os R²s advindos das seleções forward e backward, o que implica que os modelos gerados por glmulti
não apresentam nem subajuste nem sobreajuste.
Em nosso estudo de caso, os algoritmos exaustivo e genético apresentaram resultados coincidentes (embora isso não seja uma constante) e identificaram três interações (drat:hp + qsec:wt + gear:wt) como significativas. Em contrapartida, a seleção backward indicou oito interações como relevantes, o que pode sugerir um sobreajuste, conforme refletido pelo R² elevado. Por outro lado, a seleção forward apontou apenas uma interação significativa, sugerindo um possível subajuste, em consonância com o R² mais baixo observado.
Assim sendo, almejo ter fornecido argumentos convincentes de que a abordagem glmulti
supera a seleção Stepwise e culmina na elaboração de um modelo de análise verdadeiramente superior.
A saída de uma análise glmulti
é um objeto que contém o set de modelos significativos (os 100 melhores modelos por padrão). Funções padrão de regressão do R como summary()
, coef()
ou plot()
podem todas ser usadas para fazer uma inferência multi-modelo. Mas vamos começar com um breve resumo dos resultados que podem ser obtidos por meio do comando print()
:
print(h_model)
glmulti.analysis
Method: h / Fitting: glm / IC used: aicc
Level: 2 / Marginality: FALSE
From 100 models:
Best IC: 29793.4306133546
Best model:
[1] "wage ~ 1 + jobclass + education + health + health_ins + age + "
[2] " education:jobclass + health_ins:education + education:age + "
[3] " health:age + health_ins:age"
Evidence weight: 0.0786680339413555
Worst IC: 29801.3206286612
6 models within 2 IC units.
74 models to reach 95% of evidence weight.
… onde vemos as informações mais importantes, como a função de ajuste, os critérios de informação usados para classificar os modelos, a fórmula do melhor modelo e até o número de modelos que são tão bons quanto o melhor modelo. Existem 6 modelos, que também podemos ver se plotarmos nosso objeto:
plot(h_model)
Este gráfico mostra os valores dos Critérios de Informação (IC) para todos os 100 modelos do set de modelos significativos. Uma linha horizontal separa os 6 melhores modelos, que estão a menos de 2 unidades de IC de distância do MELHOR modelo. Mas quais preditores e interações esses 6 modelos contêm? Utilizando a função weightable
, podemos exibi-los facilmente:
weightable(h_model)[1:6,] |>
regulartable() |> # mostra tabelas mais apresentáveis...
autofit()
model | aicc | weights |
---|---|---|
wage ~ 1 + jobclass + education + health + health_ins + age + education:jobclass + health_ins:education + education:age + health:age + health_ins:age | 29,793.43 | 0.07866803 |
wage ~ 1 + jobclass + education + health + health_ins + age + education:jobclass + health_ins:education + education:age + health:age | 29,793.68 | 0.06952606 |
wage ~ 1 + jobclass + education + health_ins + age + education:jobclass + health_ins:education + education:age + health:age | 29,794.40 | 0.04836431 |
wage ~ 1 + jobclass + education + health_ins + age + education:jobclass + health_ins:education + education:age + health:age + health_ins:age | 29,794.43 | 0.04776916 |
wage ~ 1 + jobclass + education + health + health_ins + age + education:jobclass + health_ins:education + jobclass:age + education:age + health:age + health_ins:age | 29,795.31 | 0.03070167 |
wage ~ 1 + jobclass + education + health + health_ins + age + education:jobclass + health_ins:jobclass + health_ins:education + education:age + health:age + health_ins:age | 29,795.36 | 0.02990738 |
Neste momento, apresentamos as equações, os Critérios de Informação e os pesos de Akaike de nossos seis modelos mais destacados. O peso de Akaike de um modelo em particular indica a probabilidade de esse modelo ser o mais acertado entre todos os avaliados, servindo como um indicador de eficiência na minimização da perda de informação. Observa-se que, apesar de o modelo considerado “o melhor” possuir o maior peso, a diferença para o segundo colocado (e os subsequentes) não é significativa. Isso nos leva a questionar se o modelo mais bem classificado é de fato superior aos demais, dado que vários modelos apresentam plausibilidade similar. Surge, portanto, a questão: qual modelo deveríamos adotar?
Diante de seis modelos igualmente competentes, porém com distintas combinações de preditores e interações, identificar os elementos mais relevantes pode ser decisivo na escolha do modelo mais adequado. A função plot()
, com o parâmetro type="s"
, facilita essa tarefa ao destacar a relevância dos termos do modelo de forma agregada. A relevância de um preditor ou interação é calculada pela soma dos pesos dos modelos que incluem tal variável. Portanto, uma variável frequente nos modelos de maior peso terá uma relevância elevada. Uma linha vertical em 80% é comumente utilizada para distinguir as variáveis de maior importância, embora esse ponto de corte seja arbitrário. Poderíamos, por exemplo, ajustar esse limite para 50% e considerar para o modelo final todos os preditores e interações com relevância superior a esse percentual.
plot(h_model, type = "s")
É digno de nota que o modelo inicial já incorpora a interação age:health_ins
, atribuída com aproximadamente 50% de relevância. Esta escolha seria plenamente justificável. No entanto, considerando a presença de múltiplos termos com uma relevância próxima a 80%, opto por adotar apenas estes, incluindo a interação education:health_insurance
e o preditor health
, devido à sua distinta separação dos demais termos. Uma análise dos seis modelos mais eficazes revela que o segundo modelo contém precisamente esses termos. O terceiro modelo é ligeiramente inferior, pois omite a variável health
, mas, dado que health
é componente da interação mais significativa - age:health
, sua inclusão é preferível. Portanto, em vez de aceitar de forma acrítica o modelo preeminente sugerido pelo algoritmo, procedemos a uma avaliação meticulosa dos resultados e decidimos, com base sólida, adotar o segundo modelo como O NOSSO MODELO IDEAL.
Estamos agora em posição de interpretar, visualizar e avaliar as premissas do NOSSO MODELO IDEAL com a diligência habitual.
<- h_model@objects[[2]]
best_model
::Anova(best_model) car
plot_model(best_model, type = "int") |>
plot_grid()
No R temos o pacote performance
que facilita e muito a investigação das inferências de um modelo de regressão. Vale a pena conhecê-lo um pouco melhor.
Neste estudo, exploramos metodologias avançadas de seleção de modelos utilizando o pacote glmulti
no ambiente estatístico R, com o objetivo de identificar o modelo mais adequado para explicar a variação nos salários de trabalhadores americanos. A abordagem de “força bruta”, que considera todas as combinações possíveis de preditores e suas interações, foi comparada com métodos de seleção passo a passo e algoritmos genéticos, revelando insights significativos sobre a adequação e eficácia dos modelos.
A análise exaustiva, embora computacionalmente mais intensiva, mostrou-se uma ferramenta valiosa, capaz de fornecer modelos com valores de Critério de Informação mais precisos, refletindo um equilíbrio entre a complexidade do modelo e a qualidade do ajuste. Por outro lado, o algoritmo genético emergiu como uma alternativa robusta, especialmente útil quando lidamos com um grande número de preditores numéricos, oferecendo resultados quase idênticos em uma fração do tempo.
Curiosamente, a análise revelou que a inclusão de termos altamente multicolineares, como o exemplo do peso e índice de massa corporal (IMC), poderia inflar desnecessariamente a complexidade do modelo sem adicionar valor interpretativo. Isso ressalta a importância de uma seleção criteriosa de preditores para evitar o sobreajuste e garantir a generalização do modelo.
Ao examinar os resultados, identificamos que o modelo com a interação age:health_ins
(idade:seguro_saúde) e o preditor health
(saúde), apesar de não ser o modelo com o menor Critério de Informação, oferece um equilíbrio entre a simplicidade e a capacidade de explicação, destacando-se como o modelo ideal para a nossa análise. Este modelo não apenas captura as nuances dos dados mas também evita a armadilha do overfitting, sugerindo que os termos selecionados representam relações genuínas e não artefatos dos dados.
A escolha cuidadosa do nosso modelo ideal, portanto, não foi o resultado de uma aceitação acrítica dos resultados algorítmicos, mas de uma consideração ponderada das evidências estatísticas e da relevância prática. A capacidade de interpretar, visualizar e verificar as premissas do modelo reforça a confiança em sua aplicabilidade e utilidade.
Em suma, este trabalho demonstra que a seleção de modelos, quando conduzida com rigor metodológico e uma compreensão profunda dos dados e das técnicas estatísticas, pode levar a descobertas significativas e modelos robustos, capazes de informar decisões práticas e teóricas no campo da economia laboral.
Siddiqi, Muhammad & Alsayat, Ahmed & Alhwaiti, Yousef & Azad, Mohammad & Alruwaili, Madallah & Alanazi, Saad & Kamruzzaman, MM & Khan, Asfandyar. (2022). A Precise Medical Imaging Approach for Brain MRI Image Classification. Computational Intelligence and Neuroscience. 2022. 1-15. 10.1155/2022/6447769. Disponível em https://www.researchgate.net
Gujarati, D., N. (2004) Basic Econometrics, fourth edition, The McGraw−Hill Companies
Hebbali A (2020). olsrr: Tools for Building OLS Regression Models. R package version 0.5.3, https://CRAN.R-project.org/package=olsrr.
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on Nov 2023.
Minhas, M., S. Techniques for handling underfitting and overfitting in Machine Learning, Medium, Jun 5, 2021. Disponível em medium.com, Acesso em Out/2023.
Zablotski (2023, Nov. 5). yuzaR-Blog: R package reviews glmulti
find the best model!. Retrieved from https://yuzar-blog.netlify.app/posts/2022-05-31-glmulti/
citation(package = "glmulti")
To cite package 'glmulti' in publications use:
Calcagno V (2020). _glmulti: Model Selection and Multimodel Inference
Made Easy_. R package version 1.0.8,
<https://CRAN.R-project.org/package=glmulti>.
A BibTeX entry for LaTeX users is
@Manual{,
title = {glmulti: Model Selection and Multimodel Inference Made Easy},
author = {Vincent Calcagno},
year = {2020},
note = {R package version 1.0.8},
url = {https://CRAN.R-project.org/package=glmulti},
}
# Total timing to compile this Quarto document
Sys.time() - start_time
Time difference of 3.946595 mins