Results for X1:
{ 'knn': { 'accuracy': 0.9882352941176471,
'best_params': {'n_neighbors': 1, 'weights': 'uniform'},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 29, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 1, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 12, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 1.00 '
'17\n'
' 2 1.00 0.97 0.98 '
'30\n'
' 3 1.00 1.00 1.00 '
'19\n'
' 4 0.94 1.00 0.97 '
'16\n'
' 5 1.00 1.00 1.00 '
'19\n'
' 6 1.00 1.00 1.00 '
'18\n'
' 7 1.00 1.00 1.00 '
'21\n'
' 8 1.00 1.00 1.00 '
'22\n'
' 9 1.00 1.00 1.00 '
'22\n'
' 10 0.91 0.95 0.93 '
'21\n'
' 11 1.00 1.00 1.00 '
'21\n'
' 12 1.00 1.00 1.00 '
'18\n'
' 13 1.00 1.00 1.00 '
'18\n'
' 14 1.00 1.00 1.00 '
'19\n'
' 15 0.92 0.86 0.89 '
'14\n'
' 16 1.00 1.00 1.00 '
'24\n'
' 17 1.00 1.00 1.00 '
'21\n'
'\n'
' accuracy 0.99 '
'340\n'
' macro avg 0.99 0.99 0.99 '
'340\n'
'weighted avg 0.99 0.99 0.99 '
'340\n'},
'logistic': { 'accuracy': 1.0,
'best_params': {'C': 78.47599703514607},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 '
'1.00 17\n'
' 2 1.00 1.00 '
'1.00 30\n'
' 3 1.00 1.00 '
'1.00 19\n'
' 4 1.00 1.00 '
'1.00 16\n'
' 5 1.00 1.00 '
'1.00 19\n'
' 6 1.00 1.00 '
'1.00 18\n'
' 7 1.00 1.00 '
'1.00 21\n'
' 8 1.00 1.00 '
'1.00 22\n'
' 9 1.00 1.00 '
'1.00 22\n'
' 10 1.00 1.00 '
'1.00 21\n'
' 11 1.00 1.00 '
'1.00 21\n'
' 12 1.00 1.00 '
'1.00 18\n'
' 13 1.00 1.00 '
'1.00 18\n'
' 14 1.00 1.00 '
'1.00 19\n'
' 15 1.00 1.00 '
'1.00 14\n'
' 16 1.00 1.00 '
'1.00 24\n'
' 17 1.00 1.00 '
'1.00 21\n'
'\n'
' accuracy '
'1.00 340\n'
' macro avg 1.00 1.00 '
'1.00 340\n'
'weighted avg 1.00 1.00 '
'1.00 340\n'},
'softmax': { 'accuracy': 1.0,
'best_params': {'C': 78.47599703514607},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 '
'1.00 17\n'
' 2 1.00 1.00 '
'1.00 30\n'
' 3 1.00 1.00 '
'1.00 19\n'
' 4 1.00 1.00 '
'1.00 16\n'
' 5 1.00 1.00 '
'1.00 19\n'
' 6 1.00 1.00 '
'1.00 18\n'
' 7 1.00 1.00 '
'1.00 21\n'
' 8 1.00 1.00 '
'1.00 22\n'
' 9 1.00 1.00 '
'1.00 22\n'
' 10 1.00 1.00 '
'1.00 21\n'
' 11 1.00 1.00 '
'1.00 21\n'
' 12 1.00 1.00 '
'1.00 18\n'
' 13 1.00 1.00 '
'1.00 18\n'
' 14 1.00 1.00 '
'1.00 19\n'
' 15 1.00 1.00 '
'1.00 14\n'
' 16 1.00 1.00 '
'1.00 24\n'
' 17 1.00 1.00 '
'1.00 21\n'
'\n'
' accuracy '
'1.00 340\n'
' macro avg 1.00 1.00 '
'1.00 340\n'
'weighted avg 1.00 1.00 '
'1.00 340\n'},
'svc': { 'accuracy': 1.0,
'best_params': { 'C': 545.5594781168514,
'gamma': 29.763514416313132,
'kernel': 'linear'},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 1.00 '
'17\n'
' 2 1.00 1.00 1.00 '
'30\n'
' 3 1.00 1.00 1.00 '
'19\n'
' 4 1.00 1.00 1.00 '
'16\n'
' 5 1.00 1.00 1.00 '
'19\n'
' 6 1.00 1.00 1.00 '
'18\n'
' 7 1.00 1.00 1.00 '
'21\n'
' 8 1.00 1.00 1.00 '
'22\n'
' 9 1.00 1.00 1.00 '
'22\n'
' 10 1.00 1.00 1.00 '
'21\n'
' 11 1.00 1.00 1.00 '
'21\n'
' 12 1.00 1.00 1.00 '
'18\n'
' 13 1.00 1.00 1.00 '
'18\n'
' 14 1.00 1.00 1.00 '
'19\n'
' 15 1.00 1.00 1.00 '
'14\n'
' 16 1.00 1.00 1.00 '
'24\n'
' 17 1.00 1.00 1.00 '
'21\n'
'\n'
' accuracy 1.00 '
'340\n'
' macro avg 1.00 1.00 1.00 '
'340\n'
'weighted avg 1.00 1.00 1.00 '
'340\n'}}
Results for X2:
{ 'knn': { 'accuracy': 0.9911764705882353,
'best_params': {'n_neighbors': 5, 'weights': 'distance'},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 2, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 1, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 1.00 '
'17\n'
' 2 1.00 1.00 1.00 '
'30\n'
' 3 1.00 1.00 1.00 '
'19\n'
' 4 1.00 1.00 1.00 '
'16\n'
' 5 1.00 1.00 1.00 '
'19\n'
' 6 1.00 1.00 1.00 '
'18\n'
' 7 1.00 1.00 1.00 '
'21\n'
' 8 1.00 1.00 1.00 '
'22\n'
' 9 1.00 1.00 1.00 '
'22\n'
' 10 1.00 0.90 0.95 '
'21\n'
' 11 1.00 1.00 1.00 '
'21\n'
' 12 1.00 0.94 0.97 '
'18\n'
' 13 0.95 1.00 0.97 '
'18\n'
' 14 1.00 1.00 1.00 '
'19\n'
' 15 0.88 1.00 0.93 '
'14\n'
' 16 1.00 1.00 1.00 '
'24\n'
' 17 1.00 1.00 1.00 '
'21\n'
'\n'
' accuracy 0.99 '
'340\n'
' macro avg 0.99 0.99 0.99 '
'340\n'
'weighted avg 0.99 0.99 0.99 '
'340\n'},
'logistic': { 'accuracy': 0.9911764705882353,
'best_params': {'C': 29.763514416313132},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 1, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 1, 0, 1, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 '
'1.00 17\n'
' 2 1.00 1.00 '
'1.00 30\n'
' 3 1.00 1.00 '
'1.00 19\n'
' 4 1.00 1.00 '
'1.00 16\n'
' 5 1.00 1.00 '
'1.00 19\n'
' 6 1.00 1.00 '
'1.00 18\n'
' 7 1.00 1.00 '
'1.00 21\n'
' 8 1.00 1.00 '
'1.00 22\n'
' 9 1.00 1.00 '
'1.00 22\n'
' 10 1.00 0.95 '
'0.98 21\n'
' 11 1.00 1.00 '
'1.00 21\n'
' 12 1.00 0.89 '
'0.94 18\n'
' 13 0.95 1.00 '
'0.97 18\n'
' 14 1.00 1.00 '
'1.00 19\n'
' 15 0.88 1.00 '
'0.93 14\n'
' 16 1.00 1.00 '
'1.00 24\n'
' 17 1.00 1.00 '
'1.00 21\n'
'\n'
' accuracy '
'0.99 340\n'
' macro avg 0.99 0.99 '
'0.99 340\n'
'weighted avg 0.99 0.99 '
'0.99 340\n'},
'softmax': { 'accuracy': 0.9911764705882353,
'best_params': {'C': 29.763514416313132},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 1, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 1, 0, 1, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 '
'1.00 17\n'
' 2 1.00 1.00 '
'1.00 30\n'
' 3 1.00 1.00 '
'1.00 19\n'
' 4 1.00 1.00 '
'1.00 16\n'
' 5 1.00 1.00 '
'1.00 19\n'
' 6 1.00 1.00 '
'1.00 18\n'
' 7 1.00 1.00 '
'1.00 21\n'
' 8 1.00 1.00 '
'1.00 22\n'
' 9 1.00 1.00 '
'1.00 22\n'
' 10 1.00 0.95 '
'0.98 21\n'
' 11 1.00 1.00 '
'1.00 21\n'
' 12 1.00 0.89 '
'0.94 18\n'
' 13 0.95 1.00 '
'0.97 18\n'
' 14 1.00 1.00 '
'1.00 19\n'
' 15 0.88 1.00 '
'0.93 14\n'
' 16 1.00 1.00 '
'1.00 24\n'
' 17 1.00 1.00 '
'1.00 21\n'
'\n'
' accuracy '
'0.99 340\n'
' macro avg 0.99 0.99 '
'0.99 340\n'
'weighted avg 0.99 0.99 '
'0.99 340\n'},
'svc': { 'accuracy': 0.9970588235294118,
'best_params': { 'C': 29.763514416313132,
'gamma': 0.08858667904100823,
'kernel': 'rbf'},
'conf_matrix': array([[17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 1, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24,
0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21]], dtype=int64),
'report': ' precision recall f1-score '
'support\n'
'\n'
' 1 1.00 1.00 1.00 '
'17\n'
' 2 1.00 1.00 1.00 '
'30\n'
' 3 1.00 1.00 1.00 '
'19\n'
' 4 1.00 1.00 1.00 '
'16\n'
' 5 1.00 1.00 1.00 '
'19\n'
' 6 1.00 1.00 1.00 '
'18\n'
' 7 1.00 1.00 1.00 '
'21\n'
' 8 1.00 1.00 1.00 '
'22\n'
' 9 1.00 1.00 1.00 '
'22\n'
' 10 1.00 0.95 0.98 '
'21\n'
' 11 1.00 1.00 1.00 '
'21\n'
' 12 1.00 1.00 1.00 '
'18\n'
' 13 1.00 1.00 1.00 '
'18\n'
' 14 1.00 1.00 1.00 '
'19\n'
' 15 0.93 1.00 0.97 '
'14\n'
' 16 1.00 1.00 1.00 '
'24\n'
' 17 1.00 1.00 1.00 '
'21\n'
'\n'
' accuracy 1.00 '
'340\n'
' macro avg 1.00 1.00 1.00 '
'340\n'
'weighted avg 1.00 1.00 1.00 '
'340\n'}}